November 14, 2024

securnews

Finden Sie alle nationalen und internationalen Informationen zu Deutschland. Wählen Sie die Themen aus, über die Sie mehr erfahren möchten

Eine bahnbrechende Hypothese darüber, wie unser Gehirn funktioniert

Eine bahnbrechende Hypothese darüber, wie unser Gehirn funktioniert

Eine neue Studie schlägt eine Hypothese namens „zelluläre elektrische Kopplung“ vor und argumentiert, dass elektrische Felder des Gehirns, die durch die Aktivität neuronaler Netzwerke erzeugt werden, die physische Konfiguration subzellulärer Komponenten von Neuronen beeinflussen können, um die Stabilität und Effizienz des Netzwerks zu verbessern. Die von Wissenschaftlern des MIT, der City University of London und der Johns Hopkins University durchgeführte Forschung baut auf früheren Studien auf, die gezeigt haben, wie rhythmische elektrische Aktivität oder „Gehirnwellen“ sich in neuronalen Netzwerken koordinieren und elektrische Felder auf molekularer Ebene beeinflussen und anpassen können Gehirnfunktion und erleichtern flexibles Erkennen.

Gehirnwellen fungieren als Informationsträger. Eine kürzlich vorgeschlagene Hypothese der „Zell-Elektrokopplung“ legt nahe, dass diese oszillierenden elektrischen Felder zu einer verbesserten Effizienz und Stärke des Gehirnnetzwerks beitragen. Sie tun dies, indem sie die physikalische Konfiguration des molekularen Gerüsts des Gehirns beeinflussen.

Um seine vielfältigen Funktionen, zu denen auch das Denken gehört, auszuführen, arbeitet das Gehirn auf verschiedenen Ebenen. Informationen wie Ziele oder Visualisierungen werden durch synchronisierte elektrische Aktivität zwischen neuronalen Netzen erfasst. Gleichzeitig führen eine Vielzahl von Proteinen und anderen Biochemikalien innerhalb und um jedes Neuron die Mechanismen aus, die für die Teilnahme an diesen Netzwerken erforderlich sind.

Eine neue Arbeit von Forschern des MIT, der City University of London und der Johns Hopkins University geht davon aus, dass elektrische Netzwerkfelder die physische Konfiguration subzellulärer Komponenten von Neuronen beeinflussen, um die Stabilität und Effizienz des Netzwerks zu verbessern, eine Hypothese, die die Autoren „zytoelektrisch“ nennen. Kupplung.“

Earl K.  Müller

Besetzung Earl K. Miller hält einen Vortrag über seine jüngste Arbeit am Picquer Institute for Learning and Memory. Bildnachweis: MIT Picower Institute

Earl K. sagte: Miller, Picower-Professor am Picower Institute for Learning and Memory der University of Michigan[{“ attribute=““>MIT, who co-authored the paper in Progress in Neurobiology with Associate Professor Dimitris Pinotsis of MIT and City —University of London, and Professor Gene Fridman of Johns Hopkins.

“The brain adapts to a changing world,” Pinotsis said. “Its proteins and molecules change too. They can have electric charges and need to catch up with neurons that process, store, and transmit information using electric signals. Interacting with the neurons’ electric fields seems necessary.”

Thinking in fields

A major focus of Miller’s lab is studying how higher-level cognitive functions such as working memory can rapidly, flexibly, and yet reliably emerge from the activity of millions of individual neurons. Neurons are capable of dynamically forming circuits by creating and removing connections, called synapses, as well as strengthening or weakening those junctions. But, that merely forms a “roadmap” around which information could flow, Miller said.

The specific neural circuits that collectively represent one thought or another, Miller has found, are coordinated by rhythmic activity, more colloquially known as “brain waves” of different frequencies.

Fast “gamma” rhythms help transmit images from our vision (e.g. a muffin), while slower “beta” waves might carry our deeper thoughts about that image, (e.g. “too many calories”). Properly timed, bursts of these waves can carry predictions, enable writing in, holding onto, and reading out information in working memory, Miller’s lab has shown.

They break down when working memory does, too. The lab has reported evidence that the brain might distinctly manipulate rhythms in specific physical locations to further organize neurons for flexible cognition, a concept called “Spatial Computing.

Other recent work from the lab has shown that while the participation of individual neurons within networks may be fickle and unreliable, the information carried by the networks they are part of is stably represented by the overall electric fields generated by their collective activity.

 Cytoelectric coupling

In the new study, the authors combine this model of rhythmic electrical activity coordinating neural networks with other lines of evidence that electrical fields can influence neurons at the molecular level.

Researchers, for example, have studied ephaptic coupling, in which neurons influence each other’s electrical properties via the proximity of their membranes, rather than solely relying on electrochemical exchanges across synapses. This electrical cross-talk can affect neural functions including when and whether they spike to relay electrical signals to other neurons in a circuit.

Miller, Pinotsis, and Fridman also cite research showing other electrical influences on cells and their components including how neural development is guided by fields and that microtubules can be aligned by them.

If the brain carries information in electric fields and those electric fields are capable of configuring neurons and other elements in the brain that form a network, then the brain is likely to use this capability. The brain can use fields to ensure the network does what it is supposed to do, the authors suggest.

To put it (loosely) in couch potato terms, the success of a television network isn’t just its ability to transmit a clear signal to millions of homes. What’s also important is the details as fine as the way each viewer household arranges its TV, sound system, and living room furniture to maximize the experience. Both in this metaphor and in the brain, Miller said, the presence of the network motivates the individual participants to configure their own infrastructure to participate optimally.

“Cytoelectric Coupling connects information at the meso‐ and macroscopic level down to the microscopic level of proteins that are the molecular basis of memory,” the authors wrote in the paper.

The article lays out the logic inspiring Cytoelectic Coupling. “We’re offering a hypothesis that anybody can test,” Miller said.

Reference: “Cytoelectric coupling: Electric fields sculpt neural activity and “tune” the brain’s infrastructure” by Dimitris A. Pinotsis, Gene Fridman and Earl K. Miller, 18 May 2023, Progress in Neurobiology.
DOI: 10.1016/j.pneurobio.2023.102465

The study was funded by the United Kingdom Research and Innovation (UKRI), the U.S. Office of Naval Research, The JPB Foundation, and The Picower Institute for Learning and Memory.

Siehe auch  Dieser aktive Vulkan in der Antarktis spuckt echten Goldstaub